Buenas me podríais decir cuando se cambiaba de signo en el dominio ? Gracias
que mas da que este negativa.
En un dominio, concretamente en las raices, lo de dentro debe ser mayor o igual a 0, asi que:
4-x²≥0→4-x²=0→4=x²→x=±2
Ahora pones tus valores en la recta real y te queda que:
de (-∞,0] no hay funcion, de [0,2] es positivo y de [2,+∞) es negativo
asi que : Domf=[0,2]

Tendrás que comprobar, como siempre, cuando el discriminante de la raiz cuadrada es positivo o igual a 0, es decir cuando 4-x²>=0... Simplemente...
En este vídeo explico una inecuación identica... Inecuaciones de segundo grado #nosvemosenclase
Un agricultor comprueba que si el precio al que vende cada caja de fresas es “x” euros, su
beneficio diario, en euros, será: B(x): -10x(al cuadrado)+100x-210
a) Represente la función precio-beneficio.
b) Indique a qué precio debe vender cada caja de fresas para obtener el máximo beneficio.
¿Cuál será ese beneficio máximo?
c) Determine a qué precios de la caja obtiene pérdidas el agricultor.
POdeis explicarme este ejercicio?
B(x)=-10x²+100x-210.
su grafica es una parabola .(imagen adjunta)
Podemos calcular el ma´ximo de esa función derivando
B´(x)=-20x+100 , si B´(x)=0 ,-20x+100=0, -20x=-100
x=5, que es el beneficio máximo
tendra perdidas si el beneficio es negativo.
B(x)=-10x²+100x-210<0
factorizando B(x)=(x-3)(x-7), es decir si vende a un precio <3 pierde , lo mismo si vende a un precio >7

Julio: En la parte de vídeos de la web, matemáticas de 2 Bachi, optimización 1. Ahí tienes el ejercicio. Yo lo tengo hecho pero no lo veo y ahora no tengo tiempo de hacerlo porque salgo de viaje. Si no en tiendes algo preguntas y ya te ayudo. Buenos días desde España y un saludo.
Saludos unicoos:
Por favor me podrían ayudar a realizar este ejercicio de sistema de ecuaciones, se me hace muy complicado resolverlo porque tiene raíces. La respuestas es (1;16) ; (16;1).
De antemano les agradezco por su valiosa ayuda.
buen dia, saludos, hoy vengo con una peque#a duda, y me gustaria que me ayudaran, me podrian indicar como debo resolver este limite?? sin l'hopital
gracias de antemano, y agradesco su tiempo