logo beUnicoos
Ya está disponible el nuevo portal donde podrás encontrar nuevas asignaturas y herramientas para ayudarte más con tus estudios.

Foro de preguntas y respuestas de Matemáticas

Haz una nueva pregunta * Para dejar preguntas en el foro debes ser usuario registrado. Regístrate o inicia sesión

  • icon

    koke yera
    hace 1 semana, 1 día

    Considere A ⊂ R → B ⊂ R función biyectiva definida por f(x) = log 1 2 (x − 2) − log 1 2 (x + 1) + log2 1 2 .

    (a) Determine f −1 (x) (b) Si g(x) = 2x , determine el valor de x ∈ R tal que (g ◦ f)(x) = 8


    ayura

    replythumb_up0 voto/sflag
    icon

    Antonio Silvio Palmitano
    hace 1 semana, 1 día

    Por favor, envía foto del enunciado original completo para que podamos ayudarte.

    thumb_up1 voto/sflag
  • icon

    koke yera
    hace 1 semana, 1 día

    Suponga que la producción diaria de unidades de un nuevo producto en el t-ésimo día de una corrida de producción está dada por q = 500(1 − e −0.321t ) Tal ecuación se denomina ecuación de aprendizaje, e indica que conforme pasa el tiempo, la producción por día aumentará. Lo anterior puede atribuirse a mejorías en el desempeño de los trabajadores. Determine:

    (a) La producción en el primer día.(aproxime a la unidad completa más cercana)

    (b) Cuál es la diferencia en la producción entre el tercer y quinto día.

    (c) ¿Después de cuántos días se alcanzará una producción diaria de 460 unidades? (Redondee al día más cercano.)

    replythumb_up0 voto/sflag
    icon

    Antonio Silvio Palmitano
    hace 1 semana, 1 día

    Tienes la expresión de la función producción diaria:

    q(t) = 500*(1 - e-0,321*t) (1).

    a)

    Evalúas la expresión señalada (1) para t = 1, y queda:

    q(1) = 500*(1 - e-0,321*1) = 500*(1 - e-0,321) ≅ 137,288 ≅ 137 unidades.

    b)

    Planteas la diferencia entre las producciones de los días indicados, y queda:

    Δq = q(5) - q(3), sustituyes la expresión (1) evaluada para el valor correspondiente en cada término, y queda:

    Δq = 500*(1 - e-0,321*5) - 500*(1 - e-0,321*3), resuelves exponentes, y queda:

    Δq = 500*(1 - e-1,605) - 500*(1 - e-0,9,63), extraes factor común (presta atención a los signos), y queda:

    Δq = 500*(1 - e-1,605 - 1 + e-0,9,63), cancelas términos opuestos y ordenas términos en el agrupamiento, y queda:

    Δq = 500*(e-0,9,63 - e-1,605) ≅ 500*(0,382 - 0,201) ≅ 500*0,181 ≅ 90,5 ≅ 91 unidades.

    c)

    Observa que tienes el valor de la producción del día indicado, por lo que puedes plantear la ecuación:

    q(t) = 460, sustituyes la expresión señalada (1) en el primer miembro, y queda:

    500*(1 - e-0,321*t) = 460, divides por 500 en ambos miembros, y queda:

    1 - e-0,321*t = 0,92, restas 1 en ambos miembros, y queda:

    -e-0,321*t = -0,08, multiplicas por -1 en ambos miembros, y queda:

    e-0,321*t = 0,08,compones en ambos miembros con la función inversa de la función exponencial natural, y queda:

    -0,321*t = ln(0,08), divides por -0,321 en ambos miembros, y queda:

    t = -ln(0,08)/0,321, resuelves, y queda:

    t ≅ 7,868 ≅ 8 días.

    Espero haberte ayudado.


    thumb_up0 voto/sflag
  • icon

    koke yera
    hace 1 semana, 1 día

    Un contratista quiere cercar un terreno rectangular adyacente a una pared recta, y desea utilizar la pared como uno de los lados del área cercada. Si el constructor cuenta con 500 pies de cerca:

    (a) Determine la función que permita calcular el área de la región cercada en termino de uno de sus lados.

    (b) Encuentre las dimensiones del terreno que permiten cercar la mayor superficie y calcule área máxima delimitada.

    ayuda


    replythumb_up0 voto/sflag
    icon

    Antonio Silvio Palmitano
    hace 1 semana, 1 día

    Puedes designar:

    x: ancho del terreno,

    y: largo del terreno,

    y puedes considerar que uno de los largos se encuentra sobre la pared, por lo que el contratista debe emplear la cerca en dos anchos y un largo, y tienes la ecuación:

    2x + y = 500, y de aquí despejas: y = 500 - 2x (1).

    a)

    Planteas la expresión del área del terreno rectangular, y queda:

    A = x*y, aquí sustituyes la expresión señalada (1), y queda:

    A = x*(500 - 2x), distribuyes, y queda:

    A = 500x - 2x2 (2),

    que es la expresión del área del terreno rectangular en función de su ancho, observa que esta función es continua y también derivable, y observa que su dominio es el intervalo: D = (0,500).

    b)

    Planteas la expresión de la función derivada primera, y queda:

    A' = 500 - 4x, planteas la condición de valor estacionario (posible máximo o posible mínimo), y queda:

    A' = 0, sustituyes la expresión de la función derivada primera en el primer miembro, y queda:

    500 - 4x = 0, y de aquí despejas:

    x = 125 m;

    luego, a fin de verificar que corresponde a un máximo de la función, evalúas la expresión señalada (2) para un valor menor y para otro mayor que el valor estacionario, y queda:

    A(124) = 500(124) - 2(1242) = 62000 - 30572 = 31248 pie2,

    A(125) = 500(125) - 2(1252) = 62500 - 31250 = 31250 pie2,

    A(126) = 500(126) - 2(1262) = 63000 - 31752 = 31248 pie2;

    y puedes apreciar que el ancho: x = 125 m corresponde al valor máximo del área: A = 31250 pie2;

    luego, reemplazas el valor estacionario en la expresión señalada (1), y queda:

    y = 500 - 2(125) = 500 - 250 = 250 m, y tienes que el largo del terreno con área máxima es: y = 250 m.

    Espero haberte ayudado.

    thumb_up0 voto/sflag
  • icon

    koke yera
    hace 1 semana, 1 día

    Los biólogos han observado que la tasa de chirridos que emiten los grillos de una determinada especie está relacionada con la temperatura, y la relación parece ser casi lineal. Un grillo produce 113 chirridos por minuto a 70oF y 173 chirridos por minuto a 80oF.

    (a) Encuentre una ecuación lineal que modele la temperatura T, en función del número c de chirridos por minuto.

    (b) Si la temperatura es de 85oF, ¿cuál es el chirrido por minuto de los grillos?


    help meee plz :(

    replythumb_up0 voto/sflag
    icon

    Antonio Silvio Palmitano
    hace 1 semana, 1 día

    Puedes designar:

    t: temperatura (en °F),

    y: cantidad de chirridos.

    a)

    Tienes en tu enunciado que la cantidad de chirridos es una función lineal de la temperatura, por lo que su expresión es:

    y = m*(t - t0) + y0 (1).

    Luego, tienes en tu enunciado:

    t0 = 70 °F, y0 = 113 (primera situación),

    t1 = 80 °F, y1 = 173 (segunda situación).

    Luego, planteas la expresión de la pendiente, y queda:

    m = (y1 - y0)/(t1 - t0), reemplazas valores, y queda:

    m = (173 - 113)/(80 - 70), resuelves el numerador, resuelves el denominador, y queda:

    m = 60/10, resuelves, y queda: m = 6.

    Luego, reemplazas el valor de la pendiente y los valores correspondientes a la primera situación en la ecuación señalada (1), y queda:

    y = 6*(t - 70) + 113, distribuyes el primer miembro, y queda:

    y = 6*t - 420 + 113, reduces términos semejantes, y queda:

    y = 6*t - 307 (2).

    b)

    Evalúas la expresión remarcada y señalada 82) para la temperatura en estudio: t = 85 °F, y queda:

    y = 6*85 - 307, resuelves el primer término, y queda:

    y = 510 - 307. resuelves, y queda:

    y = 203 chirridos.

    Espero haberte ayudado.

    thumb_up0 voto/sflag
  • icon

    Mary Poppins
    hace 1 semana, 2 días

    ¿Me pueden ayudar con el c) y el d)? Muchas gracias. 

    replythumb_up0 voto/sflag
    icon

    Jose Ramos
    hace 1 semana, 2 días


    thumb_up0 voto/sflag
  • icon

    Tobias Arias
    hace 1 semana, 2 días

    me pide calcular las coordenadas del centro,focos,y los ejes,creo que lo hice bien,no estoy seguro,las coordenadas  del foco creo que quedan F1 (3+raiz de 13,1) y F2=(3-raiz de 13,1)

    replythumb_up0 voto/sflag
    icon

    Jose Ramos
    hace 1 semana, 2 días

    El 36 que pasas para el miembro de la derecha, pasa siendo negativo, con lo cual te cambia la ecuación, que sería  (y-1)2/9 - (x-3)2/4 =1,  por lo que la hipérbola te va a salir con el eje principal paralelo al eje Y: 


    thumb_up1 voto/sflag
    icon

    Antonio Silvio Palmitano
    hace 1 semana, 2 días

    Has completado correctamente los binomios elevados al cuadrado, y en tu quinta línea te ha quedado:

    9*(x - 3)2 - 81 - 4*(y - 1)2 + 4 + 113 = 0, reduces términos numéricos, y queda:

    9*(x - 3)2 - 4*(y - 1)2 + 36 = 0, restas 36 en ambos miembros, y queda

    9*(x - 3)2 - 4*(y - 1)2 = -36, divides por -36 en todos los términos, y queda:

    -(x - 3)2/4 + (y - 1)2/9 = 1,

    que es la ecuación cartesiana canónica de una hipérbola con eje focal paralelo al eje OY, cuyos elementos son:

    C(3,1) (centro de simetría),

    a = √(9) = 3 (longitud del semieje real),

    b = √(4) = 2 (longitud del semieje imaginario),

    c = √(9 + 4) = √(13) (longitud del semieje focal),

    A1( 3 , -2 ) y A2( 3 , 4 ) (vértices reales),

    B1( 5 , 1 ) y B2( 1 , 1 ) (vértices imaginarios),

    F1( 3 , 1-√(13) ) y F2( 3 , 1+√(13) ) (vértices reales),

    x = 3 (ecuación cartesiana del eje focal),

    y = 1 (ecuación cartesiana del eje imaginario),

    e = √(13)/3 (excentricidad).

    Espero haberte ayudado.

    thumb_up1 voto/sflag
  • icon

    Fatima Yahya
    hace 1 semana, 2 días

    Hola alguien me puede ayudar con este ejercicio, gracias de antemano 

    replythumb_up0 voto/sflag
    icon

    Jose Ramos
    hace 1 semana, 2 días


    thumb_up0 voto/sflag
  • icon

    Laura
    hace 1 semana, 2 días

    Hola alguien me puede ayudar con esta duda, estaba practicando ejercicio de programación lineal pero no sé como se calcula la parte que he subrayado en rojo. 

    Alguien me lo explica. 

    Gracias de antemano

    replythumb_up0 voto/sflag
    icon

    Jose Ramos
    hace 1 semana, 2 días

    Una vez calculados los vértices de la región factible que son los puntos A, B y C, resolviendo los sistemas con las rectas que los determinan, se sustituyen las coordenadas de dichos puntos en la función objetivo F (x,y) = 10x + 30y.

    Se observa que cantidad es menor (pues el ejercicio pide minimizar F) y resulta que es 1400 que proviene de sustituir la función objetivo F en el punto B = (40,50) que es por tanto el resultado del problema.

    thumb_up0 voto/sflag
  • icon

    Tobias Arias
    hace 1 semana, 2 días

    preciso resolucion.

    replythumb_up0 voto/sflag
    icon

    Jose Ramos
    hace 1 semana, 2 días


    thumb_up0 voto/sflag
    icon

    César
    hace 1 semana, 2 días


    thumb_up0 voto/sflag
    icon

    César
    hace 1 semana, 2 días

    thumb_up0 voto/sflag
  • icon

    carmela
    hace 1 semana, 2 días

    Hola unicos. Es correcto? Muchas gracias 

    replythumb_up0 voto/sflag
    icon

    Jose Ramos
    hace 1 semana, 2 días

    Al final te has olvidado de derivar la expresión cuando x > 0.   Si lo haces, sí te va a salir derivable en x = 0.

    thumb_up0 voto/sflag