Foro de preguntas y respuestas de Matemáticas

Haz una nueva pregunta * Para dejar preguntas en el foro debes ser usuario registrado. Regístrate o inicia sesión

  • icon

    lbp_14
    el 16/4/19

    Hola Unicoos

    No consigo hacer que esta función sea continua. Me podrían echar una mano?, muchas gracias


    Hallar los valores de los parámetros a, b para los cuales la función f es continua en x=0.



    replythumb_up0 voto/sflag
    icon

    Antonio Silvio Palmitano
    el 17/4/19

    Vas muy bien.

    Observa bien hasta el anteúltimo límite que tienes planteado, en el tienes que el denominador tiende a cero, por lo que debes plantear que el numerador también debe tender a cero, y para ello debe cumplirse: a = b, ya que el tercer término del numerador tiende a cero. 

    Luego, tienes tu anteúltimo límite:

    Lím(x→0) (a - b - bax)/(2x(1+ax)) = aplicas la identidad remarcada:

    Lím(x→0) (b - b - b2x)/(2x(1+bx)) = cancelas términos opuestos en el numerador:

    Lím(x→0) (-b2x)/(2x(1+bx)) = simplificas:

    Lím(x→0) (-b2)/(2(1+bx)) = resuelves:

    = -b2/2.

    Luego, planteas la condición de continuidad, y queda:

    Lím(x→0) f(x) = f(0), reemplazas la expresión del límite y el valor de la función para x = 0, y queda:

    -b2/2 = -1/2, multiplicas por -2 en ambos miembros, y queda:

    b2 = 1, y de aquí tienes dos opciones:

    1°)

    b = -1, a la que corresponde: a = -1,

    y para estos valores, tienes que la expresión de la función queda:

    f(x) =

    (ln(1-x)+x)/x2              con 1 - x > 0 y x ≠ 0,

    -1/2                              con x = 0;

    despejas en la desigualdad de validez del primer trozo, y queda:

    f(x) =

    (ln(1-x)+x)/x2              con x < 1 y x ≠ 0,

    -1/2                              con x = 0,

    y observa que el dominio de la función es el intervalo: (-∞,1).

    2°)

    b = 1, a la que corresponde: a = 1,

    y para estos valores, tienes que la expresión de la función queda:

    f(x) =

    (ln(1+x)-x)/x2              con 1 + x > 0 y x ≠ 0,

    -1/2                              con x = 0;

    despejas en la desigualdad de validez del primer trozo, y queda:

    f(x) =

    (ln(1+x)-x)/x2              con x > -1 y x ≠ 0,

    -1/2                              con x = 0,

    y observa que el dominio de la función es el intervalo: (-1,+∞).

    Espero haberte ayudado.


    thumb_up1 voto/sflag
  • icon

    lbp_14
    el 16/4/19

    Hola Unicoos

    No consigo simplificar, alguien me ayuda,

    Muchas gracias


    replythumb_up0 voto/sflag
    icon

    César
    el 16/4/19



    thumb_up1 voto/sflag
    icon

    César
    el 16/4/19


    thumb_up1 voto/sflag
  • icon

    Ppoblis Ukrus Buyam
    el 16/4/19

    Pueden resolverme esta ecuación

    1300 / (1+x)  - (900)/(1+x)^(2) - (500) / (1+x)^(3) = 0

    replythumb_up0 voto/sflag
    icon

    César
    el 16/4/19


    thumb_up0 voto/sflag
  • icon

    Nerea
    el 16/4/19

    Hola, he hecho este ejercicio mil veces y no me da la solución. ¿Me pueden ayudar a hallar la solución?. Gracias.

    replythumb_up0 voto/sflag
  • icon

    Miguel
    el 16/4/19

    Hola a todos, quería pediros que me explicaseis en términos prácticos lo que es una integral y una derivada. Muchas gracias

    replythumb_up0 voto/sflag
    icon

    César
    el 16/4/19

  • icon

    magui
    el 16/4/19

    Buenas tardes, esta bien como definición decir que un número complejo es un par ordenador de números reales? Vi esa definición pero un numero es real y el otro imaginario.

    replythumb_up0 voto/sflag
    icon

    César
    el 16/4/19

    Si es correcta ea definición como un par ordenado z=(x,y) dados en un cierto orden.

    thumb_up1 voto/sflag
    icon

    magui
    el 17/4/19

    Gracias Cesar, porque es un par de números reales si uno es real y el otro es imaginario?

    thumb_up0 voto/sflag
  • icon

    DAVID
    el 16/4/19

    Calcular el punto más cercano al punto P=(1,3,0) de entre todos los puntos de la recta determinada por el punto Q=(-2,2,1) y el vector (1,1,1). Calcular la distancia del punto P a la recta

    replythumb_up0 voto/sflag
    icon

    Antonius Benedictus
    el 16/4/19

  • icon

    Manu
    el 16/4/19

    Buenas, tengo una duda de geometría, el ejercicio me da un punto y una recta r y me pide calcular la recta perpendicular a r que pasa por el punto. Como lo hago? Muchas gracias de antemano.

    replythumb_up0 voto/sflag
    icon

    Antonius Benedictus
    el 16/4/19

    ¿En el plano o en el espacio?.


    thumb_up0 voto/sflag
    icon

    Manu
    el 16/4/19

    en el espacio

    thumb_up0 voto/sflag
    icon

    Antonius Benedictus
    el 16/4/19

    Para la proyección ortogonal de un punto sobre una recta: Página 6 de:

    http://www.apuntesmareaverde.org.es/grupos/mat/Bachillerato/BC2%2006%20GMetrica.pdf



    thumb_up0 voto/sflag
  • icon

    Marest
    el 16/4/19

    Me podrían ayudar con la siguiente ecuación de 2º de ESO?

        3x2 (3x - 2) ( x2 + 4) = 0

    Muchas gracias.


    replythumb_up0 voto/sflag
    icon

    moises
    el 16/4/19

    9x5+36x3-6x4-24x2=0

    thumb_up0 voto/sflag
    icon

    César
    el 16/4/19


    thumb_up0 voto/sflag
  • icon

    Franco Lumovich
    el 16/4/19

    Buenas!! Tengo un anagrama que es de la palabra EFERVESCENTEMENTE, me pregunta cuantas palabras se pueden formar de manera que la C no esté en la octava posición pensaba hacer 17!/7!2!2! Siendo 17! la cantidad de espacios, 7! la cantidad de E repetidas y los 2! La cantidad de T y N. Ahora si quiero quitar la posibilidad de la C estando ahí debería hacer 17!/7!2!2! - 16!/7!2!2! ? Ya que esta segunda sería la posibilidad que tendría fijando un lugar, me equivoco?

    replythumb_up0 voto/sflag
    icon

    Antonio Silvio Palmitano
    el 17/4/19

    Tu planteo es correcto: has calculado la cantidad total de anagramas, y luego le has restado la cantidad de anagramas que tienen a la letra C en la octava posición.

    Espero haberte ayudado.

    thumb_up0 voto/sflag