Foro de preguntas y respuestas de Matemáticas

Haz una nueva pregunta * Para dejar preguntas en el foro debes ser usuario registrado. Regístrate o inicia sesión

  • Abel Moreno Valenzuelaicon

    Abel Moreno Valenzuela
    el 11/10/18

    ¿Cuál es la diferencia entre óvalo y elipse?

    replythumb_up0 voto/sflag
    Césaricon

    César
    el 11/10/18

    En que el óvalo es parecido a la elipse. No igual.

    thumb_up1 voto/sflag
  • joseicon

    jose
    el 11/10/18

    se supone que puede resolverse por geometria analitica, pero no lo veo, el problema es el siguiente: En Una antigua moneda de plata se hace un corte AB. el perfil del corte un rectángulo de 0,6 cm2 de área y a una distancia de 0,5 cm de él, se hace un corte CD cuyo perfil es un rectángulo de 0,8cm2 de área. sabiendo que el corte Cd tiene un cm más de longitud que el corte AB, determine el volumen de la moneda. Gracias.

    replythumb_up0 voto/sflag
    Antonio Silvio Palmitanoicon

    Antonio Silvio Palmitano
    el 11/10/18


    Observa la figura, con la que quisimos representar la cara de la moneda, por lo que tienes que imaginar que su espesor se extiende "hacia adentro" de la pantalla (o del papel, si imprimes la imagen o haces un dibujo).

    Luego, observa que con el eje OX, un radio de la circunferencia y el corte CD quedan determinados dos triángulos rectángulos congruentes: OMC y OMD, por lo que nos referiremos al primero de ellos, en el que tienes:

    |OM| = a, que es la longitud de su base;

    |MC| = H, que es la longitud de su altura (observa que es igual a la mitad de la longitud del corte AB);

    |OC| = R, que es la longitud de su hipotenusa (observa que es igual al radio de la cara de la moneda),

    luego aplicas el Teorema de Pitágoras, y tienes la ecuación:

    a2 + H2 = R2, aquí restas a2 en ambos miembros, y queda:

    H2 = R2 - a2 (1);

    luego, planteas la expresión del área del rectángulo que es la sección de la moneda (observa que uno de sus lados tiene la longitud del corte CD, y que el otro tiene la longitud del espesor (e) de la moneda), y queda:

    2H*e = 0,8 (en cm2), aquí divides por 2H en ambos miembros, y queda: e = 0,4/H (2).

    Luego, observa que con el eje OX, otro radio de la circunferencia y el corte AB quedan determinados dos triángulos rectángulos congruentes: ONA y ONB, por lo que nos referiremos al primero de ellos, en el que tienes:

    |ON| = a + 0,5 cm, que es la longitud de su base;

    |NA| = h, que es la longitud de su altura (observa que es igual a la mitad de la longitud del corte CD);

    |OA| = R, que es la longitud de su hipotenusa (observa que es igual al radio de la cara de la moneda),

    luego aplicas el Teorema de Pitágoras, y tienes la ecuación:

    (a + 0,5)2 + h2 = R2 (3);

    luego, planteas la expresión del área del rectángulo que es la sección de la moneda (observa que uno de sus lados tiene la longitud del corte AB, y que el otro tiene la longitud del espesor (e) de la moneda), y queda:

    2h*e = 0,6 (en cm2), aquí divides por 2h en ambos miembros, y queda:

    e = 0,3/h (4).

    Luego, igualas las expresiones señaladas (2) (4), y queda la ecuación:

    0,4/H = 0,3/h, multiplicas en ambos miembros, por H*h, y queda:

    0,4*h = 0,3*H, divides en ambos miembros por 0,4, y queda:

    h = 0,75*H (5).

    Luego, tienes en tu enunciado cuál es la relación entre las longitudes de los cortes, puedes plantear la ecuación:

    |CD| = |AB| + 1 cm, expresas a las longitudes de los cortes en función de las alturas de los triángulos, y queda:

    2H = 2h + 1 cm, divides por 2 en todos los términos de la ecuación, y queda:

    H = h + 0,5 cm, aquí restas 0,5 cm en ambos miembros, y queda:

    H - 0,5 cm = h (6).

    Luego, igualas las expresiones señaladas (6) (5), y queda:

    H - 0,5 cm = 0,75*H, restas 0,75*H y sumas 0,5 cm en ambos miembros, y queda:

    0,25*H = 0,5 cm, multiplicas por 4 en ambos miembros, y queda:

    H = 2 cm;

    reemplazas el valor remarcado en la ecuación señalada (5), y queda:

    h = 1,5 cm.

    Luego, reemplazas este valor remarcado en la ecuación señalada (4), y queda:

    e = 0,2 cm.

    Luego, sustituyes la expresión señalada (5) en la ecuación señalad (3), y queda:

    (a + 0,5)2 + (0,75*H)2 = R2, distribuyes la potencia en el segundo término, y queda:

    (a + 0,5)2 + 0,5625*H2 = R2, reemplazas el valor remarcado, resuelves el segundo término, y queda:

    (a + 0,5)2 + 2,25 = R2 (7).

    Luego, reemplazas el primer valor remarcado en la ecuación señalada (1), y queda:

    4 = R2 - a2, restas a2 en ambos miembros, y queda:

    4 + a2 = R2 (8).

    Luego, igualas las expresiones señaladas (7) (8), y queda:

    (a + 0,5)2 + 2,25 = 4 + a2, desarrollas el primer término, y queda:

    a2 + a + 0,25 + 2,25 = 4 + a2, restas a2 y restas 2,5 en ambos miembros, y queda:

    a = 1,5 cm.

    Luego, reemplazas este último valor remarcado en la ecuación señalada (8), y queda:

    6,25 = R2, extraes raíz cuadrada en ambos miembros, y queda:

    2,5 cm = R.

    Luego, planteas la expresión del volumen de un cilindro circular recto, cuyo radio de base es R y su altura es e, y queda:

    V = π*R2*e, remplazas valores, resuelves factores racionales, y queda:

    V = 0,25π cm3.

    Espero haberte ayudado.

    thumb_up0 voto/sflag
    Césaricon

    César
    el 11/10/18


    thumb_up0 voto/sflag
  • Walter Manosalvasicon

    Walter Manosalvas
    el 10/10/18
    flag

    Hola, por favor podrían hacer videos de lógica matemática? Puesto que los he buscado aquí y al parecer no los hay, es un área importante de las matemáticas y sería muy bueno que nos puedan ayudar con explicaciones sobre el tema y sus reglas... De ante mano, gracias

    replythumb_up0 voto/sflag
  • Mariano Cornejoicon

    Mariano Cornejo
    el 10/10/18

    Hola unicoos como sé que tipo de sistema es, gracias.

    replythumb_up0 voto/sflag
    Antonio Silvio Palmitanoicon

    Antonio Silvio Palmitano
    el 11/10/18

    Si tienes un sistema de dos ecuaciones con dos incógnitas (x e y), queda:

    a*x + b*y = c,

    d*x + e*y = f,

    donde a, b, c, d, e y f son números reales.

    Luego, tienes tres casos para considerar, a partir de la prueba de los coeficientes:

    1°)

    Si: a/d ≠ b/e, entonces: el sistema es compatible determinado y tiene solución única.

    2°)

    Si: a/d = b/e = c/f, entonces: el sistema es compatible indeterminado y tiene infinitas soluciones.

    3°)

    Si: a/d = b/e c/f, entonces: el sistema es incompatible y no tiene solución.

    Luego, tienes para los sistemas de tu enunciado:

    a)

    el sistema es compatible determinado, ya que se cumple:

    1/2 ≠ 2/(-3);

    b)

    el sistema es incompatible, ya que se cumple:

    -2/3 = 4/(-6) ≠ 1/2;

    c)

    el sistema es compatible indeterminado, ya que se cumple:

    1/3 = 2/6 = 3/9.

    Espero haberte ayudado.

    thumb_up0 voto/sflag
  • Tobíasicon

    Tobías
    el 10/10/18

    alguien sabe como resolver esto:

    Determine el camino x recorrido por un cuerpo durante el tiempo t, si su velocidad es proporcional al trayecto, sabiendo que en 10s el cuerpo recorre 100m y en 15s recorre 200m.

    se que a respuesta es x=25.2 elevado a la 1/5 de t, no se como llegar al resultado

    gracias, disculpen las molestias!


    replythumb_up0 voto/sflag
    Antonio Silvio Palmitanoicon

    Antonio Silvio Palmitano
    el 10/10/18

    Recuerda la relación entre velocidad y desplazamiento:

    dx/dt = v (1),

    y como tienes en tu enunciado que la velocidad es proporcional al desplazamiento, puedes plantear la ecuación:

    v = k*x (2), donde k es una constante de proporcionalidad.

    Luego, sustituyes la expresión señalada (2) en la ecuación diferencial señalada (1), y queda:

    dx/dt = k*x, separas variables, y queda:

    dx/x = k*dt, integras en ambos miembros, y queda:

    ln(x) = k*t + C (3), que una solución general expresada como ecuación implícita.

    Luego, tienes los datos de tu enunciado:

    a) para t = 10 s, x = 100 m,

    b) para t = 15 s, x = 200 m;

    luego, reemplazas valores en la ecuación señalada (3) y tienes el sistema de dos ecuaciones logarítmicas con dos incógnitas:

    ln(100) = k*10 + C (4),

    ln(200) = k*15 + C (5);

    luego, restas miembro a miembro las ecuaciones señaladas (4) (5) (observa que tienes cancelaciones y reducciones de términos semejantes), y queda:

    ln(100) - ln(200) = -k*5, multiplicas por -1 en ambos miembros, y queda:

    -ln(100) + ln(200) = k*5, aplicas la propiedad del logaritmo de una división en el primer miembro, y queda:

    ln(2) = 5*k, divides por 15 en ambos miembros, y queda:

    ln(2)/5 = k;

    luego, reemplazas el valor remarcado en la ecuación señalada (4), y queda:

    ln(100) = ( ln(2)/5 )*10 + C, simplificas el primer término del segundo miembro, y queda:

    ln(100) = ln(2)*2 + C,

    aplicas la propiedad del logaritmo de una potencia en el primer término del segundo miembro, y queda:

    ln(100) = ln(22) + C, resuelves el primer término del segundo miembro, y queda:

    ln(100) = ln(4) + C, restas ln(4) en ambos miembros, y queda:

    ln(100) - ln(4) = C, aplicas la propiedad del logaritmo de una división en el primer miembro, y queda:

    ln(25) = C;

    y puedes verificar que los valores remarcados también verifican la ecuación señalada (5).

    Luego, reemplazas los dos valores remarcados en la ecuación implícita señalada (3), y queda:

    ln(x) = ( ln(2)/5 )*t + ln(25),

    aplicas la propiedad del logaritmo de una potencia en el primer término del segundo miembro, y queda:

    ln(x) = ln(2t/5) + ln(25),

    aplicas la propiedad del logaritmo de una multiplicación en el segundo miembro, y queda:

    ln(x) = ln(25*2t/5), 

    compones en ambos miembros con la función inversa del logaritmo natural, y queda:

    x = 25*2t/5,

    que es la expresión explícita del desplazamiento del cuerpo en función del tiempo.

    Espero haberte ayudado.

    thumb_up2 voto/sflag
  • ayalaicon

    ayala
    el 10/10/18

    Como puedo desmostrar esto:

    Demuestre que la curva para la cual la pendiente de la tangente en cualquier punto es proporcional a la abscisa del punto de contacto, es una parábola.

    gracias



    replythumb_up0 voto/sflag
    Césaricon

    César
    el 10/10/18


    thumb_up2 voto/sflag
  • Diegoicon

    Diego
    el 10/10/18

    me podrian ayudar:



    replythumb_up0 voto/sflag
    Césaricon

    César
    el 10/10/18

    Aqui viene un estudio de la caida no libre  (con resistencia).  Pag 3

    http://canek.azc.uam.mx/Ecuaciones/Teoria/3.AplicacionesPrimerOrden/ImpMecanica.pdf



    thumb_up1 voto/sflag
  • Lucas icon

    Lucas
    el 10/10/18

    hola, alguien me ayuda con este problema:

    Halle la ecuación de la familia de curvas tales que la pendiente de la tangente en un punto genérico P sea ½ de la pendiente de la recta que pasa por el origen y el punto P.

    Respuesta: y´2=cx


    replythumb_up0 voto/sflag
    Antonio Silvio Palmitanoicon

    Antonio Silvio Palmitano
    el 10/10/18

    Recuerda que la expresión de la pendiente en el punto genérico P(x,y) es la derivada de la función (dy/dx),

    y observa que la expresión de la pendiente de la recta que pasa por el origen y el punto P es: y/x.

    Luego, planteas la relación entre las pendientes que tienes en tu enunciado, y queda la ecuación diferencia:

    dy/dx = (1/2)*(y/x),

    multiplicas por 2 en ambos miembros, y queda:

    2*dy/dx = y/x,

    separas variables, y queda:

    2*dy/y = dx/x,

    integras en ambos miembros, y queda (observa que expresamos a la constante arbitraria de integración como el logaritmo de otra constante arbitraria):

    2*ln(y) = ln(x) + ln(c),

    aplicas la propiedad del logaritmo de una potencia en el primer miembro, aplicas la propiedad del logaritmo de una multiplicación en el segundo miembro, y queda:

    ln(y2) = ln(c*x),

    compones en ambos miembros con la función inversa del logaritmo natural, y queda:

    y2 = c*x.

    Espero haberte ayudado.

    thumb_up1 voto/sflag
  • Oscar Blascoicon

    Oscar Blasco
    el 10/10/18

    Me pueden resolver este problema 

    Gracias

    replythumb_up0 voto/sflag
    Antonio Silvio Palmitanoicon

    Antonio Silvio Palmitano
    el 10/10/18

    Puedes llamar x a la longitud total del camino que recorren las dos personas.

    Luego tienes que:

    (1/5)x es la distancia recorrida en el primer día,

    (1/6)x es la distancia recorrida en el segundo día,

    (1/4)x es la distancia recorrida en el tercer día, 

    y 46 Km es la distancia que deben recorrer en el cuarto día.

    Luego, observa que la longitud total del camino es igual a la suma de las distancias recorridas en cada día, por lo que puedes plantear la ecuación:

    x = (1/5)x + (1/6)x + (1/4)x + 46,

    multiplicas en todos los términos de la ecuación por 60 (observa que es el mínimo común múltiplo entre los denominadores de los coeficientes fraccionarios), y queda:

    60x = 12x + 10x + 15x + 2760,

    reduces términos semejantes en el segundo miembro, y queda:

    60x = 37x + 2760,

    restas 37x en ambos miembros, y queda:

    23x = 2760,

    divides por 23 en ambos miembros, y queda:

    x = 120 Km, que es el valor de la distancia total que deben recorrer Juan y María para llegar a destino;

    luego, puedes verificar que:

    en el primer día recorrieron: (1/5)*120 = 24 Km,

    en el segundo día recorrieron: (1/6)*120 = 20 Km,

    en el tercer día recorrieron: (1/4)*120 = 30 Km,

    y en el cuarto día deben recorrer 46 Km para completar el recorrido.

    Espero haberte ayudado.

    thumb_up2 voto/sflag
  • Fernando Quintanillaicon

    Fernando Quintanilla
    el 10/10/18

    Por favor, ¿cómo resolver este problema?

    El coste total (C) de producir "q" unidades de un bien es una función lineal. En una ocasión se hicieron 100 unidades con un coste total de 200 euros, y en otra se hicieron 150 unidades por 275 euros.

    Hallar la función para el coste total referido al número de unidades producidas.


    replythumb_up0 voto/sflag
    Césaricon

    César
    el 10/10/18


    thumb_up1 voto/sflag
    Antonio Silvio Palmitanoicon

    Antonio Silvio Palmitano
    el 10/10/18

    Puedes plantear la expresión del coste como función lineal de la cantidad de unidades producidas, y queda:

    C = m*q + b (1),

    donde quedan por determinar los valores de los coeficientes m y b.

    Luego, tienes en tu enunciado que una producción de: q = 100 unidades tiene un coste: C = 200 euros, por lo que reemplazas estos valores en la ecuación señalada (1), y queda:

    200 = m*100 + b, aquí restas m*100 en ambos miembros, y queda:

    200 - m*100 = b (2).

    Luego, tienes en tu enunciado que una producción de: q = 150 unidades tiene un coste: C = 275 euros, por lo que reemplazas estos valores en la ecuación señalada (1), y queda:

    275 = m*150 + b (3).

    Luego, sustituyes la expresión señalada (2) en la ecuación señalada (3), y queda:

    275 = m*150 + 200 - m*100, restas 200 y reduces términos semejantes en ambos miembros, y queda:

    75 = m*50, divides por 50 en ambos miembros, y queda:

    1,5 = m;

    luego, reemplazas el valor remarcado en la ecuación señalada (2), y queda:

    200 - 1,5*100 = b, resuelves y queda:

    50 = b.

    Luego, sustituyes los valores remarcados en la ecuación señalada (1), y queda:

    C = 1,5*q + 50.

    Espero haberte ayudado.

    thumb_up1 voto/sflag