logo beUnicoos
Ya está disponible nuestro nuevo portal donde podrás encontrar nuevas asignaturas, nuevos cursos y nuevas herramientas para ayudarte aún más con tus estudios.

Foro de preguntas y respuestas de Física

Haz una nueva pregunta * Para dejar preguntas en el foro debes ser usuario registrado. Regístrate o inicia sesión

  • icon

    Uriel Dominguez
    el 9/6/19

    Tengo una duda en cuanto a libros, ¿qué hay de diferencia entre el libro de "estática" de Ferdinand P. Beer y el "mecánica vectorial para ingenieros: estática"del mismo autor? Porque yo tengo el primero 

    replythumb_up0 voto/sflag
    icon

    Raúl RC
    el 13/6/19

    No los conozco, sorry 

    thumb_up1 voto/sflag
  • icon

    El matemático
    el 9/6/19


    Buenas tengo algun problemilla con el temario de ondas.

    cuando me piden que de la ecuacion de la onda cual tengo que dar? Tengo la de la posicion ( que a veces la veo como x=Asen(wt+ fi) o x=A cos (wt+fi) cual es la diferencia entre estas dos) y tambien tengo la que es asi : y(x,t)=Asin(wt-kx) cual tengo que utilizar? 

    Otra duda que me surge en en este problema 

    El apartdo b dice: calcula la velocidad y aceleración iniciales del barco.

    Entonces hago la derivada de la poscion y me queda v=Acos(wt+fi)w y no me da como en la correccion. 

    replythumb_up0 voto/sflag
    icon

    Raúl RC
    el 13/6/19

    La ecuación de onda se refieres a y(x,t)=Asen(ωt±kx+φ0)

    Debes hacer la derivada y sustituir por t=0s en tu ecuación (recuerda poner calculadora en modo radianes)


    Nos cuentas ;)


    thumb_up1 voto/sflag
  • icon

    Laura
    el 9/6/19

    Hola, podríais ayudarme con la siguiente cuestión que dice asi: ¿Cuando crees que un bloque de hielo se fundira más por rozamiento, al subirlo o bajarlo por un plano inclinado? Gracias. 

    replythumb_up0 voto/sflag
    icon

    Luis Andrés Mariño
    el 10/6/19

    Suponiendo que el bloque de hielo recorre la misma distancia r al subir y al bajar el plano, se fundirá exactamente lo mismo. El trabajo realizado por la fuerza de rozamiento vale en ambos casos la misma cantidad.


    WFR = FR · cos180 · r 


    FR = μN = μ · mg · cosα      (con independencia del sentido del movimiento)


    No debe confundirse con los trabajos realizados por las fuerzas que arrastran al hielo en ambos casos, ya que tienen valores distintos:


    Wsubida = mg · (senα + μ · cosα)


    Wbajada = mg · (senα - μ · cosα)


    thumb_up1 voto/sflag
  • icon

    Jhonaiker Blanco
    el 9/6/19

    Buenas tardes podrían ayudarme en este ejercicio? 

    replythumb_up0 voto/sflag
    icon

    Antonio Silvio Palmitano
    el 9/6/19

    Planteas la expresión de la fuerza aplicada en función de la posición como una función a trozos, y queda:

    F(x) =

    -8x + 8                 si 0 ≤ x ≤ 1,

    -4x + 4                 si 1 ≤ x ≤ 2.

    Luego, planteas la expresión de la aceleración en función de la posición (recuerda: a = F/M, y como tienes: M = 1 Kg, observa que no cambian los valores de la expresión), y queda:

    a(x) =

    -8x + 8                 si 0 ≤ x ≤ 1,

    -4x + 4                 si 1 ≤ x ≤ 2.

    1º)

    Luego, vamos con la primera etapa (recuerda que la partícula parte desde el reposo):

    aquí planteas la ecuación velocidad-posición de Movimiento Acelerado, y queda:

    v*dv/dx = a, separas variables, y queda:

    v*dv = a*dx, sustituyes la expresión de la aceleración para esta etapa, y queda:

    v*dv = (-8x + 8)*dx, integras en ambos miembros, y queda:

    (1/2)v2 = -4x2 + 8x + C (1),

    luego, aplicas la condición inicial para esta etapa que tienes en tu enunciado (v(0) = 0), cancelas términos nulos, y queda:

    0 = C, luego reemplazas este valor en la ecuación señalada (1), cancelas el término nulo, y queda:

    (1/2)v2 = -4x2 + 8x, que es la expresión de la velocidad en función de la posición para esta etapa;

    luego, evalúas para la posición final de esta etapa (x = 1), resuelves el segundo miembro, y queda:

    (1/2)v2 = 4, y de aquí despejas:

    v = √(8), que es el valor de la velocidad final de la primera etapa.

    2ª)

    Luego, vamos con la segunda etapa (observa que la condición final de la etapa anterior es la condición inicial de esta etapa):

    aquí planteas la ecuación velocidad-posición de Movimiento Acelerado, y queda:

    v*dv/dx = a, separas variables, y queda:

    v*dv = a*dx, sustituyes la expresión de la aceleración para esta etapa, y queda:

    v*dv = (-4x + 4)*dx, integras en ambos miembros, y queda:

    (1/2)v2 = -2x2 + 4x + D (2),

    luego, aplicas la condición inicial para esta etapa que tienes en tu enunciado (v(1) = √(8)), cancelas términos nulos, y queda:

    4 = -2 + C, y de aquí despejas:

    6 = C, luego reemplazas este valor en la ecuación señalada (2), y queda:

    (1/2)v2 = -2x2 + 4x + 6, que es la expresión de la velocidad en función de la posición para esta etapa;

    luego, evalúas para la posición final de esta etapa (x = 2), resuelves el segundo miembro, y queda:

    (1/2)v2 = 6, y de aquí despejas:

    v = √(12), que es el valor de la velocidad final de la segunda etapa.

    Espero haberte ayudado.

    thumb_up0 voto/sflag
  • icon

    Candy Gordillo
    el 9/6/19

    Hola, para mi examen de recuperación por favor, necesito practicar este ejercicio de PRINCIPIO DE PASCAL

    Una prensa hidráulica cuyos pistones tienen 8cm2 y 800cm2 respectivamente de sección, se colocan 5kp sobre el émbolo pequeño. Calcula: a) la fuerza que habrá que colocar en el émbolo grande para devolver ambos pistones al mismo plano horizontal. b) el peso que habrá que colocar en el pistón pequeño para que descienda 0,60 cm. Muchas gracias.

    replythumb_up0 voto/sflag
    icon

    Antonio Silvio Palmitano
    el 9/6/19

    Tienes los valores de las áreas de los pistones:

    A1 = 8 cm2 = 0,0008 m2,

    A2 = 800 cm2 = 0,08 m2.

    F1 = 5 KP = 5000 P.

    a)

    F2 = a determinar;

    luego, planteas la condición de equilibrio para la prensa hidráulica, y queda la ecuación:

    F2/A2 = F1/A1, multiplicas en ambos miembros por A2, y queda:

    F2 = F1*A2/A1, reemplazas valores, y queda:

    F2 = 5000*0,08/0,0008, resuelves, y queda:

    F2 = 500000 N.

    b)

    Considera que el nivel de referencia corresponde a la posición final del pistón pequeño, por lo que tienes que el pistón mayor se encuentra a una altura: h = 0,60 cm = 0,006 m;

    luego, planteas la condición de equilibrio (observa que la presión ejercida sobre el pistón pequeño debe equilibrar a la presión ejercida por la columna de agua que culmina en la base del pistón más grande, más la presión debida a la fuerza aplicada sobre el pistón mayor), y queda la ecuación:

    F1/A1 = δagua*g*h + F2/A2, aquí multiplicas en ambos miembros, por A1, y queda:

    F1 = (δagua*g*h + F2/A2)*A1, reemplazas valores (recuerda: δagua = 1000 Kg/m3, g = 9,8 m/s2), y queda:

    F1 = (1000*9,8*0,006 + 500000/0,08)*0,0008 = 5000,04704 N,

    y observa que si consideras que la fuerza aplicada sobre el pistón pequeño consignada en el inciso anterior sigue aplicada sobre él, entonces tienes que la fuerza adicional queda expresada:

    Fad = 5000,04704 - 5000 = 0,04704 N.

    Espero haberte ayudado.

    thumb_up1 voto/sflag
    icon

    Candy Gordillo
    el 11/6/19

    muchas gracias por tu ayuda!!!

    thumb_up0 voto/sflag
  • icon

    Steven EL Batuta Rojas
    el 9/6/19

    1.       Un péndulo cónico con una masa de 3 kg cuelga de una cuerda ideal y gira en una circunferencia horizontal de 80 cm de radio con una velocidad angular de 2 rad/s. Calcular:

     

    a) El ángulo que la cuerda forma con la vertical                       a) (Resultado: θ = 18° 5' )                                          

                                     

    b) La tensión de la cuerda.                                                            b) t= 30,9 


    SOLO quiero los ejercicio como me sales este resultados

    replythumb_up0 voto/sflag
    icon

    Raúl RC
    el 13/6/19


    thumb_up0 voto/sflag
  • icon

    Steven EL Batuta Rojas
    el 9/6/19

    1.       Nuestro coche no arranca y tenemos que empujarlo hasta que alcance una velocidad de 20 km/h. Si su masa es de 1200 kg y conseguimos arrancarlo empujándolo durante 80 m en horizontal y desde el reposo, calcular:

     

      a) Su aceleración.                                               respuesta     a) 0,192

      b) La fuerza que hemos hecho si no hay rozamiento.    respuesta  b) f= 230,4

     

     solo quiero el ejercicio como me sales esto resultados 

     

    replythumb_up0 voto/sflag
    icon

    Raúl RC
    el 13/6/19


    thumb_up0 voto/sflag
  • icon

    Sergi Alabart Castro
    el 9/6/19

    En esta actividad el resultado me da 2.4N*s. Cómo puedo hacerla para que dé bien?

    replythumb_up0 voto/sflag
    icon

    Raúl RC
    el 13/6/19

    La cantidad de movimiento no se conserva debido a que existen perdidas de energia debido a la deformación de la pelota y también pérdidas acústicas.

    Esto lo trató el profe en estos vídeos:


    Coeficiente de restitución


    En cuanto a tu problema has de tener en cuenta que la velocidad de vuelta es negativa:

    Δp=mv2-(-mv1)=m(v2+v1)=0,08·60=4,8N·s



    thumb_up0 voto/sflag
  • icon

    Sergi Alabart Castro
    el 9/6/19
    flag


    replythumb_up0 voto/sflag
    icon

    Raúl RC
    el 13/6/19

    Cual es la duda?

    thumb_up0 voto/sflag
  • icon

    Eduardo
    el 9/6/19

    Hola 

    me podriais ayudar a resolver este problema que no soy capaz? 

    Muchas gracias! 

    Un saludo 




    replythumb_up0 voto/sflag
    icon

    Raúl RC
    el 13/6/19


    thumb_up1 voto/sflag